PREFERRED ANTI - 1,3- SUBSTITUTION BY ATTACK OF ORGANOCUPRATES ON THE METHANE-SULFINATE OF $(R) - (-) - 3 - HYDROXY - 3 - PHENYLPROPYNE$. AN ATTRACTIVE ROUTE TO CHIRAL ALLENES .

G.Tadema , R.H.Everhardus , H.Westmijze and P.Vermeer .

(Department for Organic Chemistry of the State University , Croesestraat 79 , Utrecht , The Netherlands)

The synthesis of optically pure chiral allenes has been the target of many studies $^{\rm 1}$ Several investigators have tried to achievesuchasynthesisby reacting chiral propargylic substrates with organocuprates. Remarkably, the observed syn/anti - ratio of the organocuprate induced 1,3- substitutions appears at least to be dependent on the type of propargylic substrate which is used .

For instance, van Dijck et al. observed 80% syn - and 20% anti -1,3- substitution for the reaction of " Mestranol acetate " with lithium dimethylcuprate in diethyl ether $^{\,2}.$ On the other hand , anti -1,3-substitution preferentially occurs if acetates or carbamates derived from chiral non-steroidal propargylic alcohols are reacted with lithium dialkylcuprates in diethyl ether $3,4$. Recently, we have shown that in " Mestranol methanesulfinate " the syn - route is exclusively followed if this sulfinic ester is treated with the heterocuprate $[MeCuBr]MgCl.LiBr$ in tetrahydrofuran (THF) 5 .

Hitherto , nothing was known about the stereochemical pattern of organocuprate induced 1,3 substitutions in non-steroidal propargylic sulfinates . We therefore extended our previous study to the reaction of the methanesulfinate $\frac{1}{2}$ 6 – derived from (R)-(-)-3-hydroxy-3-pheny 7 propyne - with some organoheterocuprates of the type [RCuBr]MgX.LiBr (3) in THF , and in this paper we wish to report our preliminary results.

Treatment of 1 (0.005 mol) with 3 (0.010 mol; R = Me(X = C1) or Ph(X = Br)) 5 in THF (30 ml) during 2 hours at -60° followed by protonolysis of the unreacted cuprate at -60° and usual work-up (c<u>f</u> $\frac{f}{f}$), afforded the allenes (R,S)- <u>4</u> (R = Me or Ph) in a high yield ($>$ 90%) :

 $R = Me$ ($X = Cl$) or Ph ($X = Br$)

Both allenes showed negative optical rotations ($\alpha|_{n}^{20}$ found for 4 with R = Ph : -868.8^o c = 0.47,CHCl₃) ; $[\alpha]_D^{23}$ found for <u>4</u> with R = Me : -197.7⁰ (c = 2.36 , acetone)) which is characteristic for an enantiomeric excess of $(R)-(-)-4$ and thus for the occurrence of more anti - than syn - 1,3 -substitution in both cases (see reference 1 and other references cited therein). The optical yield of the conversion of 1 into 4 seems to be very good if $R = Ph$. Based on the highest value of $[\alpha]_n^{25}$ reported for this compound , viz. -1137 $^{\rm o}$ (CHCl₂)¹ , and on the assumption that our starting alcohol was optically pure ($c f^7$), the enantiomeric purity of $\frac{4}{5}$ (R = Ph) amounts 88%. In the literature no data are available concerning the specific rotation of optically pure $(R)-(-)$ -4 with R = Me but the high value of $\left[\alpha\right]_D^{25}$ observed for our product is very promising ($cf⁴$).

Our observations are consistent with the results obtained by Crabbé 3 and Pirkle 4 for secondary substituted propargylic acetates and carbamates respectively. This could imply that the anti-1,3-substitution route is the normal stereochemical pathway in esters derived from secondary propargylic alcohols while the syn - route is preferred if the esters are derived from tertiary propargylic alcohols $2,5$. Nevertheless, a study of sulfinic esters of type 1 bearing no aryl group on the chiral center is necessary to justify this assertion , as the formation of a cuprate- arene π - complex between 1 and 3 (intermediate 2 in the Scheme) could also be responsible for the preferred anti - $1,3$ - substitution in 1.

Currently,we are investigating the factors which determine the stereochemical course of organocuprate induced 1,3 - substitutionsinpropargylic compounds in more detail.

References and notes

- 1. For a review , see : R.Rossi, P.Diversi , Synthesis , 25 (1973).
- 2. L.A.van Dijck , B.J.Lankwerden , J.G.C.M. Vermeer , A.J.M.Weber , Recl.Trav.Chim.Pays-Bas , 90 , 801 (1971).
- 3. J.L.Luche, E.Barreiro,J.M.Dollat,P.Crabbe , Tetrahedron Lett. , 4615 (1975 1.
- 4. W.H.Pirkle , C.W.Boeder , J.Org.Chem. , 43 , 1950 (1978).
- 5. P.Vermeer, H.Westmijze, H.Kleijn, L.A.van Dijck, Recl.Trav.Chim. Pays-Bas, 97,56 (1978).
- 6. The sulfinate was prepared as described in reference 5.
- 7. (R)-(-)-3-hydroxy-3-phenylpropyne $\left(\left[\alpha \right]_D^{25}$: -20.8^o (c = 4.30, dioxan) ; Litt.value ⁸ :-17.68^o $(c = 3.45$, dioxan)) was obtained by crystallization the ester of N-phtaloy1-(S)-phenylalanine and racemic 3-hydroxy-3-phenylpropyne from methanol to a constant specific rotation $(\int_{R} \alpha\Big]_{R}^{25}$: -146.3^o (c = 2.07 , acetone) ; m.p. 134.0 -135.5^o) followed by hydrolysis of the ester with sodium hydroxide.
- 8. R.Weidmann, A.Schoofs, A.Horeau, Bull.Soc.Chim.France, 1976 (3-4), 645.

(Received inUK 17 July 1978; accepted for publication 8 August 1978)